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1. Introduction 
Scores of research activities have been conducted in recent years as part of an attempt to 
define the propagation and attenuation of communications signals through the 
atmosphere. These have, to a certain extent, allowed for the consideration of numerous 
factors, including multipath, ducting, diffraction, terrain, and weather phenomena. 
However, while it is the case that RF propagation models can provide a characterization 
of the physical aspects of these signals, future projects will require realistic and real-time 
representations of communications signals with these physical aspects incorporated. The 
Air Force Flight Test Center and the Navy Air Combat Environment, Test and 
Engineering Facility both require the capability to accurately represent the "real world" 
atmospheric propagation of communications signals for real-time Installed Systems Test 
Facility (ISFT) applications. 

This research effort is directed at the fulfillment of this demand through the 
accomplishment of the following tasks: Search of the available literature and models of 
these phenomena; identify those numerically efficient algorithms and models with 
application to the installed systems test environment; and lastly, specify and prototype a 
software module for incorporation into the existing communication simulator. The effort 
will maximally utilize existing research and modeling and further extend those efforts to 
the ISTF application. 

Specifically this task will develop methods for rapid efficient methods, algorithms and 
software to signal attenuation for the Joint Communications Simulator (JCS). The JCS is 
a real time simulator and thus the delivered software must provide propagation 
predictions in real time for all relevant simulation players. The Test and Evaluation 
scenarios consist of a 400 x 400 square km battle space area in which the system under 
test is immersed. Every simulation player is moved on 1/20 second time steps producing 
a typical aircraft movement of 10 meters per time step. Since there are up to 400 mobile 
platforms and 2000 emitters in the scenario, this gives a potential required execution time 
for a single propagation prediction of no less than 1/80,000 seconds. The calculation time 
constraint includes not only determining the physical interactions, but also extraction of 
terrain data and other environmental data. Obviously, if possible, only those propagation 
predictions in which the loss displays a large change over a typical time step should be 
evaluated. Thus, the terrain resolution and other first order environmental factors will 
drive determining the re-computation time for the simulation assets. 

The priorities for this research were coordinated with the JCS program manager and the 
developers. Their foremost concern is giving JCS the capability to model terrain effects. 
Initially the priority is for first order terrain effects caused by terrain blockage. Once the 
first order attenuation effects have been integrated, terrain multi-path is to be considered. 

Because the JCS currently only computes free space loss without considering terrain 
blockage or reflection, the first phase of this research effort shall explore computational 
methods for Line of Sight (LOS) interference and Beyond Line of Sight (BLOS) 
diffraction effects.   Further the JCS has only 96 signal generators available to model 



multi-path signals, thus only the direct and a representative composite reflected ray will 
be used for the simulated communications link. In addition to improving LOS and BLOS 
methods, optimal methods to extract terrain data while determining propagation relevant 
geometrical properties shall be investigated. During this phase we intend to improve upon 
the accuracy and run time speed of the methods commonly found in the Joint Spectrum 
Center's (JSC) Terrain Integrated Rough Earth Model (TIREM) and the Institute of 
Telecommunications Service's (ITS) Irregular Terrain Model (ITM), also known as 
Longley-Rice. Parabolic Equation methods, unless implemented on signal processing 
hardware, have been deemed to be much too slow to be used for the JCS. 

The second phase of the project seeks to extend the methods from phase 1 to be able to 
model multi-path. This will expand upon the single reflected ray method to give a more 
statistical representation of the multi-path. Although many methods are currently applied 
to model multi-path in signal simulations, the computation constraints will force the 
multi-path model to be very fast and use limited computer resources. Further the multi- 
path methods will not be able to utilize the JSC signal processing hardware. 

In short, Remcom shall develop efficient methods to model terrain reflection and 
diffraction including multi-path. Operational software based on the model will be 
developed in order to provide JCS the capability of running faster than real time 
propagation predictions required by the test and evaluation scenarios. 

2. Status of effort 
This model will not only be used by the ISTF JCS, but also by the Air Force Intelligence 
Warfare Activity (AFIWC). Because the AFIWC requires a similar model with an 
extended frequency range to 500 KHz, AFIWC is funding the development of the LF and 
HF ground wave methods. 

This report summarizes the accomplishments toward the goals of the first phase. Since 
the last status report in September, 2003, we have continued testing our methods and 
evaluating their performance in preparation for integration with the terrain extraction, and 
transition to the JCS architecture. The project plan is foxind in Section 6 and the spending 
curves found in Section 7. 

The prototype of Remcom's new propagation model incorporating first order terrain 
effects has been completed. This model, referred to as the Terrain Multipath 
Elecfromagnetic Model (TMEM), is described in detail in the next section. 

3. Terrain Multipath Electromagnetic Model 
Existing propagation models force a tradeoff between run-time and accuracy. Models 
based on the parabolic equation (PE) such as APM and VTRPE provide good results, yet 
are computationally intensive. Other methods are quicker, such as those used by TIREM 
and ITM, but results less realistic. 
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Remcom has developed the Terrain Multipath Electromagnetic Model (TMEM) to fill the 
need for a propagation model that is fast enough for simulation, yet provides realistic 
results. 

3.1. Definitions 
Path Loss is defined as the log of the ratio of the power actually received at a specified 
antenna to that transmitted. 

I = -101ogio 
yPrj 

The received power PR may be expressed (MKSA units) as the product of the power 
density of the electric field at the receiver (watts/m^) and the theoretical maximum 
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aperture area available to the emitter which for a Herzian dipole is — 
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Where 12071 is the fi-ee space impedance associated with propagation in a vacuum 
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and the constant radiated power at the transmitter is the product of the corresponding 
power density and the fiiU surface area of the sphere at radius r, the line-of-sight distance 
between transmitter and receiver. 
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If received and transmitted fields are equal, the ratio of fields in the second bracketed 
expression is unity and the path loss reduces to the first bracketed term which defines the 
fi-ee space loss. The ratio of received to transmitted fields defines the attenuation factor, 
and it is the principle objective of terrestrial propagation to model the log of the 
attenuation factor in dB to obtain the loss over free space or excess loss. 

In this proposal the diffractive effects defining the excess loss are modeled as products of 
two elementary forms including that for diffraction over irregular terrain and associated 
with diffraction by a perfectly absorbing knife edge and that for smooth earth propagation 
and modeled according to the numerically accessible methods of Norton [10]. The 
profiles will be subdivided according to the geodesic geometry of the terrain and each 
subdivision will be categorized according to which of the two elementary diffraction 
models it best conforms. The total loss will be defined as the product of partial 
attenuation factors resulting fi-om these elementary assignments and of a functional form 
intended to achieve continuity as the various partial diffraction sectors are traversed. The 
following section will display the essential features of the terrain subdivisions according 
to elementary diffractive forms and will include examples with smooth earth terrain and 
an example consisting exclusively of irregular terrain features. 

3.2. Comprehensive     Perspective    (Overview)     of    Partial 
Diffraction Factors Relevant to Terrestrial Propagation 

The elementary diffraction forms discussed in the previous section may be identified by 
the presence of characteristic features of the geodesic geometry inherent in the terrain 
profile. As applied to geometrical optics, geodesic paths are the ray paths of shortest 
distance from a fixed transmitter to a receiver of arbifrary range and height along the 
terrain profile. The diffraction centers used to compute partial attenuation factors for both 
irregular and smooth terrain may be identified as the vertices of the discrete portion of the 
geodesic path or as end points of the tangent arcs accompanying terrestrial geodesic paths 
over uniformly elevated terrain. The (discrete) diffraction centers are accompanied by 
optical accessibility sectors within which xmobstructed ray paths exist between the 
diffraction center and a field point confined to the sector. The angular bounds of the 
sectors may be defined such that they subdivide the vertical propagation plane into 
regions dominated by the defining diffraction center which is located at the intersection 



of the ray paths defining its upper and lower limits. An example of the subdivided radial 
propagation plane for a path profile consisting exclusively of irregular terrain appears in 
Figure 1. 

Figure 1. 

RANGE COORDINATE (KM) 

Subdivide Radial Propagation Plane for Irregular Terrain 

3.2.1. Discussion of irregular terrain diffraction sectors 
The terrain profile appearing in Figure 1, consisting of a random assortment of knife 
edges, will be used to illustrate the diffraction sectors described above by examining the 
fiinctional behavior of the total path loss in a vertical excursion along the line segments 
appearing near the right margin of the figure. The total attenuation due to the knife edges 
is modeled as the product of single knife edge attenuations in which the effective source 
(transmitter) geometry is provided by the most immediate geodesic relation opposite the 
direction of propagation. The total loss is then the sum of the (partial) losses 
corresponding to each term in the product of attenuations. 

A set of vertically arrayed symbols has been introduced in the figure for each diffraction 
sector to indicate the evolution of its partial excess loss contribution as a function of 
height. The difft-action sectors in Figure 1 have been labeled with the same Arabic 
numeral as that used to label the associated knife edge (diffi-action center). The geodesic 
path to an arbitrary field point is a simple extension of the path to the diffi-action center 
along a line segment from the diffraction vertex to the field point. The specific partial 
attenuation contributed by the sector depends upon the location of the field point relative 
to that sector. Thus the boundary between sectors 0 and 1 is marked by a solid line 
parallel to the shadow boundary of the first knife edge. Accompanying the solid line is a 
schematic representation of a curve of constant attenuation (shown as a dashed line) 
corresponding to the same excess loss as that evaluated at the first knife edge. Field 
points falling within sector (0) are assigned a partial excess loss equal to the standard 



smooth earth attenuation loss, provided it does not exceed the value of the upper bound 
contour, and are otherwise assigned the value equal to that of the upper bound. Thus field 
points lying above the upper bound contour are assigned the standard smooth earth 
excess loss, whereas field points below the contour are assigned a constant excess loss 
which is the value defining the upper bound contour. 

As the field point approaches the first sector, (which is dominated by single knife edge 
diffi-action involving the transmitter and the terrain obstruction labeled KEl in the 
figure), the contribution to the loss fi-om the first knife edge is assigned a value of zero 
until the clearance ratio above the first knife edge exceeds a value of-0.78. The geometry 
corresponding to this transitional value of the clearance ratio is indicated in the figure by 
a square bracket labeled Tl. (In addition, the geometry corresponding to a clearance ratio 
of -.78 is indicated for each sector by a like-numbered square bracket slightly above the 
respective shadow boundary.) Field points below the critical clearance ratio of transition 
region Tl are assigned partial losses given by the standard Fresnel integral for a perfectly 
absorbing knife edge [8], subject to an upper bound given by the loss computed at the 
next higher geodesic point. The value of the upper bound loss for each sector is shown in 
the figure as a dashed contour line near the lower bound of the sector and intersecting the 
corresponding following knife edge. As the vertical descent is continued a non-zero value 
of excess partial loss is contributed by each sector encountered, provided the clearance 
ratio exceeds -.78 and provided that it does not exceed this upper attenuation limit. 

As the vertical descent enters the lowermost sector(4), the total excess path loss has 
accumulated a partial excess loss fi-om each of the four sectors given by the upper 
attenuation limit of that sector and the final partial loss is that due to the fourth knife edge 
with effective source at the third diffraction center. The following section will examine a 
more general terrain configuration including a significant smooth earth component which 
will require elementary smooth earth diffraction methods to compute the corresponding 
partial diflfraction contribution. 

3.2.2. Discussion of irregular terrain including portions of uniform 
elevation (smooth earth) 

A more general terrain profile including an optically significant portion of uniform 
elevation appears in Figure 2 and is fiirther characterized by two non inter-visible knife 
edges. The diffraction sectors in the figure include that marked (0) above the shadow 
boundary of the first knife edge (KEl), sector (1) below the first shadow boundary and 
above the first tangent line passing through point TNI, sector (2) modeled by smooth 
earth diffraction, between the first and second tangent lines passing respectively through 
points TNI and TN2, and finally that marked (3) which occupies the region below the 
shadow boundary of the second knife edge. 



Figure 2. 
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General Terrain Profile with Two Non-Intervisible Knife Edges 

An objective in the design of the current model is that it reduces to smooth earth 
attenuation in the absence of irregular terrain features. In order to accomplish the 
reduction to smooth earth attenuation in the absence of irregular terrain, field points 
located in sector zero are understood by default to sustain an initial loss due only to 
smooth earth attenuation. As the transition to sector one is approached, the smooth earth 
attenuation loss is restricted to an upper bound given by its value at the first diffraction 
center. Continuity across the sector boundary is accomplished by defining the smooth 
earth attenuation as its conventional functional value if less than the upper bound loss and 
to otherwise defines the loss as equivalent to the upper bound loss. Consequently, a 
partial excess loss given by the standard functional form is assigned for field points lying 
above the transition contour and points lying below the transition contour are assigned a 
partial loss equivalent to the its defining constant value. 

As the boundary between sectors 0 and 1 is approached, an additional loss due to the 
knife edge labeled KEl becomes significant as the clearance ratio above the first knife 
edge approaches the transition value of -0.78. The geometry along the second vertical 
line corresponding to this transition geometry is labeled Tl in Figure 2. The first sector 
is bounded below by the line passing through point TNI which is the point of tangency 
with the smooth terrain. The contour corresponding to the limiting value of loss 
contributed by the first knife edge is schematically shown as a curved dotted line 
somewhat above the tangency. Below the transition region (Tl)and within sector one, the 
partial loss contributed by the first knife edge is given by the conventional functional 
form if less than this upper bound value which is also the limiting value assigned for 
those losses otherwise exceeding the limit. 



Continuing the vertical descent, as field points approach the tangent line through TNI, an 
additional loss attributable to attenuation by the encroaching smooth earth is expressed 
for points below the smooth earth transition region, labeled T2 in Figure 2. (The choice 
to use smooth earth attenuation is justified by the existence of smooth terrain between 
knife edges KEl and KE2 and is thus modeled with an effective transmitter at the same 
height as the first knife edge and approaching a limiting value given by the loss evaluated 
at the second knife edge.) The additional smooth earth loss increases in value in the 
descent through sector 2 until it reaches its limiting value corresponding to the dotted 
contour above the shadow boundary of the second knife edge (KE2). Field points below 
the upper bound contour are assigned a partial diffraction loss equal to that defining the 
upper bound. A third partial diffraction loss due to the second knife edge (KE2) is 
sustained by those field points lying below the corresponding transition region T3 in 
Figure 2. This loss is supplemented by an additional shadowing loss modeled as a smooth 
earth attenuation of a previously knife edge diffracted field as discussed in the appendix 
(13). 

3.3. Extraction of Geodesic Paths 
Since the diffraction centers essential to the calculation of the path loss are confined to 
local geometrical convexities which define the geodesic path between relevant antennas, 
it becomes necessary to extract the relevant geodesic geometry intrinsic to the terrain 
profile. This section will describe a diffi-action center identification process intended to 
avoid a possible oversight of similar methods which may ignore terrain features not 
among the vertices of the dominant geodesic path but optically relevant to the calculation. 

Although the dominant diffraction centers are the vertices of the geodesic path between 
transmitter and receiver, the loss calculation may be significantly affected by sub- 
geodesic points, especially those within a Fresnel zone of the dominant geodesic ray 
paths. Restricting the optically relevant environment to the external geodesic path may 
lead to discontinuities in path loss calculation because the evolution of the terrain may 
introduce dramatic alterations of the points comprising the dominant geodesic path, 
permitting an erroneous neglect of optically significant terrain features no longer among 
the dominant geodesic vertices. Inclusion of sub-geodesic paths assures that points 
originally dominant in an evolving terrain profile may continue to exert their influence as 
the path is extended. 
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Figure 3. 
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Delineation of Geodesic Ray Paths 

As an example, consider the terrain profile appearing in Figure 3 which consists of a 
random assortment of five knife edges distributed over a 25 km path. Critical terrain 
points of this profile have been labeled by the order they appear within the profile. 
Terrain points labeled (0), (11), and (22), marked with red arcs, are the dominant 
geodesic points for the first 10 km of the path, but point (22) is excluded fi-om the new set 
of dominant geodesic points which results if the path is extended to point (27) which 
replaces point (22) as the third point of the resulting dominant path marked with green 
circles. 

A branching of geodesic paths is implied fi-om point 11 of the first geodesic path to point 
27 which is the first unique point of the second geodesic path, marked in green, which is 
then extended to point 33. This structure of the dominant geodesic path remains intact for 
paths of a lesser range coordinate than profile point 38 where a second branching firom 
point 27 occurs to access the first unique point of the outermost geodesic path marked 
with blue arcs. Since the first set of optical paths marked with red and green arcs conform 
to the definition of optically relevant points for the shorter paths, a generalization of 
optical relevance would include all points considered optically relevant anywhere along 
an exhaustive traversal of the entire path profile. Defining points contained in a 
continuous geodesic (convex) path originating at the transmitter as elements of a geodesic 
seam regardless of length, the optically relevant points may be defined as all points lying 
on the geodesic seams generated by the specified invariant transmitter. Thus each of the 
three paths discussed above originate at the transmitter, define a locus of continuous 
convexity, comprise a geodesic seam and are therefore included among a universal set of 
optically relevant points, as defined here. 

The geodesic seams are located by recording the indices of the geodesic path to a 
specified point on the path profile as a function of the range coordinate of that point. The 
geodesic paths are characterized by monotonically decreasing slopes and are therefore of 



a negative second derivative. The relevant geometry for geodesic path extension 
inspection is depicted in Figure 4, where it is understood that final tv^o points of a knovi^n 
geodesic path, labeled 10 and II, have already been established. Inspection of the point at 
12 for its suitability as an extension of the known geodesic path also requires knowledge 
of the point just beyond point 12 and shown as 13 in the figure. The continuity of 
negativity requires that the curvatures of the approach and exit vectors associated with 
point 12 are both negative. (The vector TQI fi-om point (0) terminating at point (1) can be 

used to define mutually orthogonal unit vectors ej = TQI and 62 as kxei. The orientation 

of ri2 with respect to TQI is negative in the formal sense that ^12 -^2 <0. Alternatively 

the sign of the curvature may be defined as the sin of angle Z(I0-I1-I2) which is critically 
negative if it exceeds ;r) This requires that the approach angle to (12), Z(I0-I1-I2) , 
terminating on the point in question, and the exit angle Z(I1-12-13), centered on the point 
in question, must both be negative. Confirmation of both negative slopes justifies the 
inclusion of the point (12) as a convex extension of the geodesic path whose current 
leading element is point II. 
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Figure 4.        Geodesic Path Extension 

For computational purposes, the proper curvatures of approach and exit are confirmed for 
each additional extension point and the process is repeated until a point is found which 
violates the continuity of negativity. If the point in question is found to exhibit a negative 
approach angle but a positive exit angle, it is recognized as being the non convex 
terminus of the current geodesic path and is discarded fi-om further consideration. If the 
point however is found to exhibit a positive approach angle, the current path is terminated 
but the inspected point is retained for possible insertion into a higher order geodesic path. 
The laminated structure of the geodesic seams assures that a new geodesic path to such 
an excluded point may be established from a point within the current outermost geodesic 
path. 
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As exemplified in Figure 3, the first (red) geodesic path terminates at point (22) and a 
new geodesic path is initiated at point (27) as an extension fi-om previous point (11) 
which is the last point among those of the previous geodesic path to satisfy the double 
negative curvature constraint for points (0, 11 27, 28) serving as (10, II, 12, 13) 
respectively. Points 1-10, 12-21 and 23-26 are eliminated in this process because none 
are properly configured to provide negative exit curvature when considered as extensions 
of any previous geodesic point. Continuing the analysis beyond point 27, points 28-32 are 
eliminated because ,although each as point 12 admits to a negative approach curvature 
fi-om points (10, II; 12, 12 + 1) = (11, 27; 12, 12 + 1), none is properly configured with 
respect to the corresponding following point at 13 = 12 + 1 to provide the requisite 
negative exit curvature. An extension is found at point 33 which exhibits the proper 
approach and exit curvatures as defined by the vector relations of point (10, II; 12,13) = 
(11, 27; 33, 34) respectively. No suitable extensions among the points 34-37 are found 
because, although each exhibits the desired approach curvature, each also exhibits an 
undesirable exit curvature when approached form point 33. Since the approach curvature 
to point 38 fi-om {10, II; 12 13} = (27, 33; 38, 39} is positive, the geodesic path is 
terminated, a new branch point from the previous geodesic path at point 27 is identified 
and the third and final geodesic path is extended beyond point 38 to its final extension at 
point 46. 

The methods described above for irregular terrain are directly applicable to portions of 
the profile determined to be of xmiform elevation as expected at sea level. The upper right 
panel of Figure 5 exemplifies a terrain profile consisting of irregular features, manifested 
here as knife edges at points (318) and (399) and of an extended portion of uniform 
elevation between the transmitter at point (0) and point (315). Extension of the geodesic 
path beyond point 0 involves examining approach and exit slopes of (10, II, 12,13) for 12 
beyond 0. (Points 10 and II are formally initialized as lying at the base and apex of the 
transmitter which is assigned terrain index 0) Points 1-108 are excluded because they 
each exhibit positive exit slope despite the negative approach curvature from point 0. 
Point 109 is the first point beyond the smooth earth horizon of point (0) and is also the 
first point to exhibit a negative exit curvature in the approach from point 0 and therefore 
the first extension of the geodesic path. The ray path from point (0) to its horizon at point 
(109) may be described as the tangential insertion of the ray path from the transmitter at 
point (0) into the geodesic path extended by a smooth earth arc beginning at point 109. 
When restricted to uniformly elevated terrain beyond an elevated point of a ray path, the 
search for path extensions with continuous negative curvature has then led to the 
detection of the horizon of the elevated terrain point. 

11 
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Smooth Earth with Inter-Visible Knife Edge 

Upon tangential insertion into the uniformly elevated portion of the profile, here at the 
horizon point (109), all subsequent points satisfy the criterion of extended geodesic 
curvature until irregular terrain is encountered at point (318). Responding as described 
earlier to a detection of obstructed geodesic geometry, a search is conducted among the 
established geodesic points for a branch point to this first unique point of the next higher 
order geodesic path. From an inspection of points previous to point 318 for the proper 
approach and exit slopes, it becomes apparent that point 0 serves as the branch point to 
the next higher order geodesic path and that point 318 is the first unique point of the path 
which has been marked in green in the figure. The branching point is at point (0) because 
the knife edge at point (318) is above the projected horizon of point 0 shown in the 
Figure 5 as an extended tangent intersecting the transmitter horizon at point (109). 

A variation of this geometry is shown in Figure 6 in which the first knife edge is now 
below the projected horizon of the transmitter. As with inter-visible obstructions 
separated by smooth earth discussed earlier, the first geodesic path proceeds fi-om the 
transmitter at point (0) to its horizon which for this profile is now at point 127 and along 
the smooth earth arc to the first obstruction at point 396. The first geodesic path is 
terminated and a search is conducted for proper branching to a higher order geodesic path 
as before. It becomes apparent fi-om the resulting inspection of points that point (219), 
beyond the first tangential insertion at point (127) and also a point within the uniformly 
elevated portion of the terrain, is the last point among those inspected which satisfies the 
curvature requirements for geodesic extension. The branching from point 219 is the 
greater terminus of the smooth geodesic arc between points 127 and 219, each of which is 
a tangential insertion focus and local (smooth earth) horizon for the corresponding 
irregular terrain features. 
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Figure 6.        Knife Edge Beyond Horizon 

3.4. Designation    of    Diffraction    Centers    and    Forward 
Propagation Shadows 

Provided the geodesic seams of the terrain profile, the diffraction centers may be 
identified according to a methodology described in this section. It is customary to 
minimally require that terrain vertices to be modeled as diffraction centers must block the 
direct Line of sight ray path between an emitter and other portions of the terrain. The 
geodesic seams identified in the previous section consist of serialized lines segments 
between adjacent vertices of the optical ray path and, for those paths encountering 
smooth earth profiles, continuous geodesic arcs of uniform elevation bounded by 
transitional tangent rays fi-om both endpoints to the corresponding irregular terrain 
relation. 

The geodesic seams provide the vertices of the discrete portions of the optical ray as well 
as any continuous geodesic segments introduced by portions of terrain determined to be 
of uniform elevation. Since the points of the geodesic path necessarily exhibit continuity 
of negative curvature, they also satisfy the earlier requirement of successive ray path 
obstruction. The vertices of the discrete portion of the geodesic seams appear to then 
qualify as centers of diffraction which for the purposes of this report are modeled as 
perfectly absorbing knife edges. The continuous portions of the ray paths, as exemplified 
by the arc between points (127) and (219) in Figure 6, and their most immediate irregular 
relations, as exemplified by points (0) and (396) in the Figure 6, define elements 
consisting of effective antennas of finite height separated by uniformly elevated terrain 
and may therefore be modeled as localized smooth earth attenuation partial diffraction 
factors. 

According to the identification procedtire thus described, the diffraction centers of the 
example profiles shown in Figure 7, Figure 9, and Figure 11 are identified respectively in 
Figure 13 - Figure 15 in which the knife edge diffraction centers of the discrete geodesic 
portion are indicated by the knife edge attenuation label AKE(IL, 10, IG) where the three 
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integer arguments reference the ordering of points in the geodesic path serving as 
effective source, diffraction center and limiting field point, respectively. The smooth 
earth attenuation diffraction centers are indicated in Figure 14 and Figure 15 by the 
smooth earth attenuation label ASE(IO, II, 12,13) in which the integer arguments indicate 
geodesic indices of points serving respectively as source, first and second tangents, and 
limiting attenuation field point. The effective transmitter geometry for the partial 
diffraction losses due to the knife edge at point (II-3) is defined by the geodesic path just 
preceding the knife edge, which in Figure 15 is point (II-2). Partial losses contributed by 
this knife edge are then computed with an effective transmitter located at point (II-2) 
which serves as the tangential origin of the ray path fi-om the smooth earth to the knife 
edge at point (II-3). 
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Figure 7.        Delineation of Geodesic Ray Paths 
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Figure 8.        TMEM Propagation Calculation at 20.08 MHz 

15 



200 

Figure 9. 
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Smooth Earth with Inter-Visible Knife Edge 
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Figure 10.       TMEM Smooth Earth Inter-Visible Knife Edge at 20.08 MHz 
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Figure 11.      Knife Edge Beyond Horizon 
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Figure 12.      TMEM Knife Edge Beyond Horizon at 20.08 MHz 
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Figure 13.      Diffraction Centers for Sample Terrain Profile 
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Figure 14.       Smooth Earth Tangency with Visible Discrete Diffraction Center 
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Figure 15. 
RANGE COORDINATE (M) 

Knife Edge Beyond Smooth Earth Horizon 

3.5. Ray Path Construction and Total Loss Calculation for 
Arbitrary Field Point 

With the geodesic seams of the terrain profile established as the essential intermediates 
for ray path construction, it becomes possible to establish the geodesic path and therefore 
the discrete and continuous diffraction centers of relevance to an arbitrary field point. As 
in the analysis associated with geodesic path extension, the geodesic path to an arbitrary 
field point may be regarded as the composite of the geodesic path to the critically convex 
terrain point, defined below, and the ray path fi-om that point to the field point. Referring 
again to the notation and geometry of Figure 16, the convex critical point is the terrain 
point (II) of largest range with most immediate lesser relation (10) of the geodesic path 
which admits to a negative curvature in the approach to the field point (12). Associated 
with the convex critical vertex is a radial sector bounded above by the extension of the 
geodesic path approaching the vertex and bounded below by extension of the path to the 
next geodesic point of the path. As shown in Figure 18 the sectors may be fiirther 
subdivided by intermediate obstructions if the defining knife edge also serves as a branch 
to lesser order geodesic paths interior to the outer-most geodesic path. In the following 
section the more general aspects of shadow boundary continuity associated with traversal 
of various diffraction sectors including sub geodesic obstructions will be examined from 
a more comprehensive perspective. 
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Figure 16.      Geodesic Path Extension 

3.5.1. Continuity of attenuation across shadow boundaries 
Provided the geometry of diffraction centers, associated upper bound shadow boundaries 
and range dependent lower bound restriction of any sub geodesic obstructions, this 
section will examine the rationale for enforcement of total attenuation continuity as the 
diffraction sectors are traversed and the total loss is accumulated. Before considering the 
more general ten-ain geometry in which a dominant geodesic path is obstructed by a 
number of sub geodesic features, the basics of shadow boundary continuity enforcement 
may be described as applied for the simple truncated wedge appearing in Figure 17. Each 
of the two diffraction centers which include the vertex at the apex of the wedge and the 
vertex to the right of the apex is characterized by one of two mutually adjacent diffraction 
sectors. The upper bound of the apical diffraction sector is its shadow boundary which 
appears in the figure as a ray path extended beyond the vertex with the same slope as the 
approach to the vertex from the transmitter. The lower bound of the apical diffraction 
sector is the radial extension of the path from the vertex to the next diffraction center. As 
described below, a diffraction ray path and the associated partial diffraction loss will be 
computed for any unobstructed field point within the respective diffraction sector. 
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Figure 17. 
RANGE COORDINATE (KM) 

Shadow Boundary Continuity for Truncated Wedge 

Along the vertical line passing through point A, the smooth earth attenuation is evaluated 
from the upper margin to the intersection with the dashed curved contour passing through 
point A corresponding to its value at the first knife edge and is assigned this constant 
value below this contour. (The assignment of the upper attenuation limit above the 
shadow boundary assures continuity with the loss as computed below the shadow 
boundary as modeled by Epstein and Peterson [1] who express the total loss as the sum of 
two independent single knife edge losses including that due to the first knife edge with 
the second knife edge as its effective field point and that due to the second knife edge 
with the first knife edge serving as its effective source.) 

Along the vertical line containing points B and C, the first knife edge attenuation is 
assigned the value of 1 (zero loss) above transition region B where the scaled clearance 
argument reaches a value of -.78 The knife edge attenuation is evaluated by the 
associated knife edge attenuation function based on a ID Fresnel integral between 
transition region B and point C where is reaches its maximum attenuation value 
corresponding to the dashed curved contour and is assigned this constant value below 
point C. Along the vertical line passing through transition region D, the second knife 
edge attenuation is assigned a value of 1 above transition region D where the scaled 
clearance argument attains a value of -.78 and is assigned the value of the associated 
knife attenuation function based on a ID Fresnel integral value below transition region D. 
A more general diffraction center obstructed by sub-geodesic terrain obstacles is 
considered in the following section. 
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3.5.2. Discussion    of    Generalities    Introduced    by    Sub    Geodesic 
Obstructions (profiles with shadows obstructions) 

The more general terrain profile including sub geodesic obstructions of a lower order 
than the external geodesic path is shown in Figure 18. Apparent in the figure are the 
complications introduced by optical obstructions of a diffracted ray path and the 
geometrical considerations for inclusion of a diffraction component from a diffracfion 
center not among those of the dominant geodesic path. In particular, the diffracted rays 
attributable to the second knife edge (KE2) as illuminated by the transmitter, point (0), 
encounter range-dependent obstructions (KE(3-4)) between the second knife edge and the 
dominant geodesic outlet at KE5. The existence of an unobstructed ray path to a field 
point between KE2 and KE5 can be confirmed only by establishing, for each of the three 
subintervals imposed by the intervening knife edges that the field point in question lies 
above the local shadow boundary shown as a solid line in each subinterval. Beyond KE5 
the knife edge labeled KE2 is no longer among the points in the dominant geodesic path 
extending directly from the transmitter to KE5. The partial diffraction loss due to this 
secondary diffracfion center may be described as a function of elevation in a descent 
along the vertical line appearing in the figure between knife edge KE5 and the right 
margin. Between the upper margin and transition region T (shown as a square bracket 
above the shadow boundary), the partial diffraction loss due to (KE2)is the standard 
single knife edge loss involving source at point (0), diffraction center at point (KE2) and 
limiting field point at point (KE5) for which the notafion AKE (025) is used in the figure. 
The limiting attenuation due to this diffraction center is defined by its value at KE5. 
Below the transition region, the partial diffracfion loss due to the second knife edge 
beyond KE5 is assigned the constant value given by this upper bound attenuafion. The 
similarity of this modeling to that used for diffraction centers within the dominant 
geodesic path assures a continuous transifion to geometries in which the considered 
obstruction would be among the dominant diffraction centers. 

RANGE COORDINATE (KM) 

Figure 18.        Sub Geodesic Diffraction 
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3.6. Fused wedges 
In anticipation of the comprehensive desirability of a propagation model which is at once 
capable of treating terrain including both irregular and artificial features with piecewise 
linear faces as in polygonal obstacles, it becomes necessary to include a terrain geometry 
recognition feature which detects portions of piecewise linear terrain including those 
features essential in the processing of the diffraction centers. A representative profile 
including both irregular terrain and a block shaped obstacle intended to suggest a 
schematic representation of a building appears in Figure 19. 

3000 6000 

Figure 19.      Terrain Profile with Polygonalizable and Irregular Terrain 

Since the defining feature of the artificial obstacles is the presence of any piecewise 
geometrically linear faces which can only be represented with discrete profile 
assignments by coUinear points, the algorithm described earlier for identifying geodesic 
seams imbedded in the terrain profile was enhanced to include a local co-linear detection 
feature which in its examination of terrain points simultaneously inspects for co-linearity 
involving each point in the profile and the corresponding two previous contiguous points. 
Upon detecting any isolated three such co-linear points, a line segment is initiated and 
possibly extended by any subsequent points conforming to the co-linearity criterion. The 
relevant line segment is extended until a non linear terminus is detected and the 
continuous set of points comprising a co-linear segment is provided an identifying 
segment index and the constituent points are each labeled as components of the segment. 
Anticipating the use of single and multiple wedge diffraction according to the methods of 
the uniform geometrical theory of diffraction (UTD) to model the diffraction associated 
with the vertices defined by adjacent co-linear segments, the dependence of UTD upon 
only the internal wedge angle defined by adjacent co-linear segments permits the 
elimination of the interstitial points of the detected line segments in which only the 
endpoints are retained.  Since any two adjacent co-linear segments will have a common 
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point, the composite construction consisting of the two adjacent line segments and their 
common point vertex is sufficient to define a UTD diffraction center provided the 
geodesic path to the diffraction center is also provided. As an example, the profile 
appearing in Figure 19 is observed to contain a continuous sequence of co-linear points 
defining the upper face of a rectangular obstacle and elimination of the associated 
interstitial points produces the (co-linearly) reduced profile appearing in Figure 20. 

3000 4000 6000 

Figure 20.      Terrain Profile w^ith Polygonalizable and Irregular Terrain After Removal 
of Interstitial colinearities (Reduced Terrain) 

Since the endpoints of the artificial terrain feature are also diffraction centers, the two 
complementary faces for completing the geometry of the two (fused) wedges are both 
taken as their most immediate non coUinear relations. Thus the co-linearly reduced 
profile appearing in Figure 20 includes the two diffraction centers labeled in the figure 
and the critical internal wedge angles required for wedge diffraction are defined as the 
angles spanned in a rotation about the diffraction centers between the corresponding 
bounding coUinear faces. In Figure 20 the two diffraction centers labeled go 12 ^^ 6l23 
are then characterized by the internal wedge angle complementary to the arc centered at 
the labeled point and extending between its most immediate (reduced) terrain relations. 
The identification of diffraction centers defined by two co-linear segments is 
accomplished by assigning a value of one to a UTD identification flag which is assigned 
for all diffi-action centers and otherwise initialized as zero. Any subsequent calculation of 
diffraction related quantities involving such diffraction centers will be executed 
according to the relevant UTD formalism including single and multiple serialized and 
fused wedge composite structures. The following section will describe utilization of 
knowledge of the geodesic paths to alls diffraction centers and their forward propagation 
direction optical obstructions to extract the relevant arguments for UTD diffraction. 
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Since the geodesic paths and forward propagation optical shadows are available for all 
diffraction centers including those with positive UTD identification flags and since 
geodesic illumination is assumed for all relevant diffraction calculations, the standard 
source coordinates p' and ^' are the polar coordinates of the source point associated 
with the most immediate geodesic relation in the direction of the transmitter. These 
source coordinates are computed in a coordinate system with the diffraction center as 
origin and with rotated Cartesian axes defined by the unit vector el in the direction of the 
most immediate terrain relation in the direction of the source and therefore aligned along 
the illuminated side of the wedge, and an associated orthogonal unit vector defined by 
(ei )x(^). The field point coordinates, p and ^, are the radial coordinates of the relevant 
receiver target as computed in the same coordinate system. The processing of the 
diffraction centers designated as compatible with the methods of UTD is expected to 
proceed identically to those modeled as elements of serialized knife edge or smooth earth 
diffraction centers including establishment of immediate local source relations and 
evaluation of upper bound attenuations at any optical obstructions in the direction of 
forward propagation. The specific complex partial UTD field component contributed to a 
sequence of serialized diffractions is given by the relation 

E},=E}-'D{p\,l>\p,^^^''^ 
StS     j 

^-iks 

where ^Q ^ is the complex incident field as propagated along the relevant geodesic path 

to the diffraction center in question, D is the UTD diffraction coefficient of Kouyoumjian 
and Pathak and where the final factor is the spreading factor constructed from quantities 
Sf and s which are, respectively, the sum of all finite ray path elements encountered in 

the geodesic ray path to the diffraction center, and the final ray path component from the 
diffraction center to the field point. 

In the interest of enhanced conformity with earlier methods involving diffraction 
simulation with perfectly absorbing knife edges, it has been found possible to use this 
defining basic element in conjunction with image theory to closely approximate the loss 
patterns of wedge diffraction. Considering the evaluation of the field point labeled R in 
Figure 21, the knife edge attenuated fields are independently evaluated at the field point 

r, to obtain E^{r), and at the virtual image r' to obtain E^^ (r'). The virtual receiver 
vector r' is obtained as the reflected image of r through the dark surface of the wedge 
(with normal unit vector 62 as shown in Figure 21 according to the reflection operation: 

r' = r-2{r-62)62 
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Figure 21.      Use of Image Theory to Simulate Wedge Diffraction with Fresnel (Half 
Plane) Diffraction Theory 

A reflection coefficient for this process is then evaluated consistent with a field points 
inclined relative to the reflecting surface with skew angle y/ = w^-(l). A similar pair of 

partial fields is then constructed as before using the image of the transmitter, obtained as 
a reflection through the lit face of the wedge which also requires evaluation of the 
relevant reflection coefficient with an inclinafion from the reflecting surface of skew 
angle y/ = ^. The four conjugate partial fields are then superposed to obtain the total 
diffracted field as 

The agreement with the exact UTD results as shown in the vertical excursion plots of 
Figure 22 and the contour plots of Figure 23 and Figure 24 is encouraging. 
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Simulated Wedge Diffraction 
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Figure 24.      Propagation Plane Path Loss Contours for Wedge Diffraction Obtained 
Using Exact (U)GTD 

4. Results 
The latest trial test for the TMEM propagation algorithm show promising results. This 
section compares TMEM to other existing propagation models in several different test 
cases. 

The first test case seeks to isolate diffraction fi-om the other phenomena. In this case a 
transmitter at 1,278 meters MSL, vertical polarization, min range = 25 km, max range = 
50 km, min height = 1,248 meters, max height = 3,248 meters for AGL and MSL, 
number of ranges = 201, number of heights = 101, the terrain profile in range and height 
in meters to (0, 0), (25, 1, 748), and (50,0). 

The PE methods demonstrate the underlying physics very well. TMEM and TIREM 
match the PE methods quite well in the shadow region. 

28 



THUi 10 MiB TIEQI 10 m» 

soooo 

i 

1(0 

)000«               40»«« 

Run^e 

1 

1»0 JO* ttt   t*<i 

L«3! 

Figure 25.       Wedge, Model Comparisons at 10 GHz, Vertical Polarization 

The next test case involves an 80 km terrain segment of North Table Mountain, obtained 
from the Institute for Telecommunication Science. In this case a transmitter at 5 meters 
AGL, vertical polarization, min range = 0 km, max range = 80 km, min height = 1,450 
meters, max height = 2,200 meters for AGL and MSL, number of ranges = 301, number 
ofheights = 401. 

The PE method demonstrates the underiying physics very well. TIREM and TMEM 
match the PE methods quite well in the shadow region. 
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Figure 26.       ITS Terrain Data, Model Comparisons at 10 GHz, Vertical Polarization 

The last test case involves a 50 km terrain segment of the Colorado Mountains. In this 
case a transmitter at 7 meters AGL, vertical polarization, min range = 0 km, max range = 
50 km, min height = 1,600 meters, max height = 3,500 meters for AGL and MSL, 
number of ranges = 251, number of heights = 301. 

The PE method demonstrates the underlying physics very well. TMEM and TIREM 
match the PE method quite well in the shadow region. 
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Figure 27.       Colorado Mountains, 50 km Range, 
Mode! Comparisons at 10 GHz, Vertical Polarization 
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5. Further Research 
Additional research planned for the Terrain Multipath Electromagnetic Model is detailed 
in the following sections. 

5.1. Adjustment of Excessive Loss for Multiple Knife Edge 
Attenuations and for Overlapping Shadow Boundaries 

The essential equation for computing attenuation as modeled by a perfectly absorbing 
knife edge is derived from asymptotic properties of the more rigorous formulations which 
result from the assumption that displacements in range are much greater than the 
orthogonal displacements in elevation. The exaggerated excess losses observed earlier for 
the proposed model in comparison with TIREM, displayed again in Figvire 28, are an 
illustration of a violation of those basic assumptions in that the separation of knife edges 
is only 200 meters. Although somewhat arbitrary lower limits could be imposed on knife 
edge spacing , its is the intention of this effort to include attenuation compensation 
factors which will properly adjust the excessive multiple diffraction resulting from 
diffraction centers of less than optimum spacing. Deygout [88] has derived an expression 
which serves as a double knife edge attenuation correction which could be applied for 
each of the successive knife edges pairings defining a multiple knife edge configuration 
and is of the specific form 

[if' 

where q and p are scaled knife edge heights and a is the geometrical adjacency 
parameter derived in the exact two knife edge study of Millington et. al. [9]. If the 
spacing parameter is ideal, a assumes the value of ;r/2, and the knife edge correction 
factor is 1 but as alpha approaches a vanishing value, the correction attenuation factor 
approaches 2 for a loss correction that results in 6dB less loss, provided both knife edges 
lie along the line between antennas for which the initial calculation would otherwise 
yields a loss associated with two attenuation factors of (1/2) or 
loss = -201ogio[(l/2Xl/2)] = lldB. 
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Figure 29. 
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The multiplicity of knife edge for this particular simulated profile is also somewhat due 
to the choice to model a structure with artificial polygonal segments with exact linear 
height functions as a function of the range. Since the coordinates understood to be 
elevations above sea level necessarily exclude earth curvature, the construction of the 
actual optical obstructions essentially transforms the linearly modeled terrain segment 
with zero curvature into convex curves with a negative curvature equivalent to that of the 
4/3 earth. The curvature detection algorithm described earlier correctly detects the 
corresponding portions of terrain with continuous negative curvature and the associated 
terrain points are processed as knife edges. Since the terrain profiles are elevations above 
sea level, optically linear constructions of zero curvature can only be constructed by 
including a compensating positive curvature directly into the terrain profile. If the terrain 
spacing is increased by a factor of two to the more typical spacing approaching 15 
seconds and if the terrain profile is adjusted as suggested here to model surfaces of zero 
curvature in the optical environment of a 4/3 earth atmosphere, the plot appearing in 
Figure 29 results. The less lossy nature of the resulting propagation modeling is readily 
apparent from the spacing of contour lines which is 2dB in both Figure 28 and Figure 29. 
In view of its effectiveness in the reproduction of exact results for two knife edges 
covering a wide range of knife edge proportions, it is realistic to expect the gain factor of 
Deygout to critically assist in providing results similar to that of Figure 29 without the 
uncertainties of artificial terrain or knife edge spacing restrictions. For truly linear terrain 
obstacles as intended in this particular test profile, modeling by perfectly absorbing knife 
edges is less realistic and it becomes necessary to introduce the methods of GTD, 
discussed in the following section, to properly model the associated diffraction. 

The juxtaposition of linearly uniform segments defines a diffraction center characterized 
by an interior wedge angle, a geodesic orientation with respect to an effective transmitter 
source and therefore admits to a modeling consistent with the wedge diffraction 
formalism of Koyoumjian and Pathak [6]. A muUiplicity of such constructs justifies the 
standard serialization of multiple wedge diffraction centers inherent in the methods GTD 
in which effective serialized source geometries are defined and caustic flux preserving 
spreading factors are well established. The existence of terrain realistic impedance 
boundary conditions, serialized geometries which introduce overlapping shadow 
boundaries and the presence of horizontal polarization especially in association with 
metallic surfaces requires a supplementing of GTD with slope diffraction and its semi- 
heuristic adaptations to finite ground constants [3], [4], [7]. The desirability of GTD was 
discussed in an earlier related progress report including coverage plots of loss in the 
vertical propagation plane for a truncated wedge Figure 17 and for the rounded wedge 
appearing in Figure 28 and Figure 29. The functional dependence of the associated GTD 
formalisms on source coordinates (ray path magnitude and angle of approach) and 
corresponding field point coordinates eliminates the uncertainties of knife edge spacing 
tolerance for such obstacles exhibiting the requisite polygonal geometry. Results for the 
same calculation at 300 MHz (high conductivity; horizontal polarization) with full access 
to the methods of GTD and slope diffraction available to the TMEM GTD Addendimi 
appear in the upper left panel Figure 30 (and for 5000 MHz and in Figure 31) The 
accompanying panels of Figure 30 display results for the same problem but using 
alternate propagation models, TIREM, APM and parabolic equations (VTRPE). The 
TMEM  GTD  addendum  appears  to  provide  an  adequate  approximation  of the 
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numerically exact results shown in VTRPE. Since the underlying optical geometrical 
parameters for computational GTD as dictated by inter-relational geodesic geometry are 
direct generalizations of those required for the basic diffraction elements presently 
implemented in the developing proposed model, the extension to GTD and higher order 
adaptations is expected to be a minimally invasive enhancement of current methods, fully 
implemented within the established computational infrastructure. 

Finally the existence of inhomogeneous earth ground constants as most conspicuously 
exemplified by transitions between land and sea will require an additional flexibility to 
appropriately adjust ground constants and weighted partial paths loss contributions to be 
in conformity with established limiting quantitative characteristics of path loss for 
propagation over mixed land and sea paths. 
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Figure 30.      300 MHz 
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Figure 31.  5 GHz 

5.2. Performance Enhancements 
This phase of research and development has focused on the development of a physically 
accurate propagation model. As the model is slated for use in a real-time system, it must 
run as such. Thus, significant improvements to the speed and efficiency of the algorithm 
are planned. 
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background and expertise. His research pursuits include: electromagnetic propagation 
modeling and techniques, cellular phone modeling methods, evaluation of tactical 
communications and intelligence systems. These intellectual enterprises have shaped a 
remarkably broad range of professional accomplishments at Remcom, such as the 
development of the Electromagnetic Propagation Integrated Resource Environment 
(EMPIRE), and a single point urban geolocation method based on urban propagation 
predictions. Dr. Stephen Fast has also led the Remcom in a highly successful 
collaboration with the PSU Meteorology Department, which focused on the development 
of atmospheric interpolation methods for anomalous conditions that may be used in 
support of radio wave propagation. 

Supporting Dr. Fast is Dr. C. Clay Marston. Dr. Marston recently joined Remcom after 
serving as the primary theoretical, algorithmic, and software developer of TIREM at 
Alion Science and Technology Corporation. Dr. Marston holds a Ph.D. in physics and 
has conducted fimdamental research in quantum mechanics and theoretical 
electromagnetics. His current research interests include numerical methods in 
electromagnetics especially diffraction and scattering. His work improving the methods 
of TIREM and other ray based propagation models have resulted in new techniques for 
more rigorous methods that are computationally efficient. 

M. Jeff Barney is an undergraduate electrical engineering student at The Pennsylvania 
State University. Jeff is interested in terrestrial propagation and has investigated the 
various differences of many RF propagation models including VTRPE, APM, ITM, 
TIREM, Prophet, RPO, and MMwave. Additionally, Jeff has developed methods to 
derive woridwide foliage maps used to support RF propagation through foliage. 

9. Publications 
The results of the first portion of this work are being prepared for submission to Radio 
Science. 

10. Interactions/Transitions 
Soon after the end of the first year, the results of the first phase shall be transitioned to 
the JCS. 
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11. New discoveries, inventions, or patent disclosures 
N/A 

12. Honors/Awards 
N/A 
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13. Appendix - Earlier Progress Report 

13.1. Accomplishments/New Findings 

13.1.1. Baseline run times and model comparisons 
Prior to implementing any new methods or algorithms, existing models' performance was 
investigated. Several benchmarks test cases were run to compare run times and 
propagation predictions. Thus, those areas requiring improvement were identified. Thus 
far, we have explored the terrain extraction performance, compared the predictions for 
various models for a few standard test cases, and made performance comparisons using 
the most promising existing models and algorithms to apply to the JCS. 

13.1.1.1. Terrain extraction study 
There are several methods to compute the points along a great circle path. To extract 
terrain between two points, the range and bearing between them must be computed. Then 
along the great circle, latitudes and longitudes must be found and corresponding terrain 
computed from the National Imagery and Mapping Agency (NIMA) Digital Terrain 
Elevation Data (DTED). Below we discuss the methods that could be applied. In 
accordance with the JCS requirements, only 1 km DTED terrain data will be used and the 
maximum area over which terrain will be used in 400x400 square kilometers. 

13.1.1.1.1. Modified Rainsford Method 
The modified Rainsford method is one of the most accurate methods. This method 
utilizes a real earth model, i.e. WGS-84, and an iterative algorithm to provide very 
accurate calculations for the forward and inverse problems, i.e. computing a point on the 
earth given the range and bearing from a given point and computing range and bearing 
given two points on the earth. However, with respect to performance the iterative nature 
of the algorithm can cause unnecessary increases in time and complexity, especially 
when a tolerable level of error can be achieved with less complex algorithms. 

13.1.1.1.2. Linear Interpolation 
This method simply treats the latitude longitude grid as a Cartesian coordinate system 
with latitude representing X and longitude representing Y. Using this method the end 
points of a bearing act as the end points of a line between the two locations and using the 
parametric representation of this line we can find the location of any points in between. 
This method is simple and very fast; however it can produce large errors as distance from 
the equator increases. 

13.1.1.1.3. Great Circle 
This method uses a perfect sphere to represent the surface of the earth. This is a more 
reasonable approximation than the flat earth model used in the Linear Interpolation 
method, but is not as accurate as the real earth model used in the modified Rainsford 
method. Using this method is a compromise between the two previous methods 
providing more accuracy with a slight performance penalty. This method primarily uses 
trigonometric functions. 
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13.1.1.1.4. Test Results 
To determine the potential run time improvement over the Modified Rainsford Method of 
the other methods, a test was run in Nellis AFB and surrounding area. The test was 
designed to approximate operation in a 400 km X 400 km area. For simplicity we chose 
a slightly larger area that spanned 4 degrees X 4 degrees. This area was sampled on the 
diagonal for a total of 100000 points. The results are depicted in Table 1 below. 

Table 1 

MRM GC Linear 
4957 m 

! 

Max Difference in 
meters from Modifiedl 

1   Rainsford Method   i 

Om 181.781m 
i 
1 

'Speed up compared to' 
MRM 

N/A 5/3 10^ 
i 

13.1.1.1.5. Optimization 
Further optimization may be performed by allocating fewer temporary variables and 
precomputing certain values for the Great Circle method. Another possible solution is to 
combine the methods in a dynamic way such that depending on the area of the world and 
path length. A combination between methods may allow a better balance of performance 
and accuracy. Investigation of optimizations for the Modified Rainsford Method has not 
been completed and a closer investigation of the method may reveal some possible 
optimizations such as pre calculation of sin/cos tables and using them as a lookup for in 
subsequent queries. 

13.1.1.1.6. Recommendations and Conclusions 
Although the linear interpolation is significantly faster, the error will be almost 5 terrain 
points at long ranges. The great circle method would interpolate between the same terrain 
points and resulting in an acceptable error. Thus we have begun building our software 
using a hybrid method between linear interpolation the great circle method. 

13.1.1.2. Validation comparisons 
Although there have been many papers comparing various propagation models and 
algorithms, e.g. knife-edge and other diffraction methods, veiy few if any quantitative 
nimierical comparisons have been done. Thus there is no hard data on which to select a 
propagation modeling algorithm. To assist selecting a proper method for the JCS, a few 
simple test cases were selected and some of the currently available propagation models 
were compared using these cases. Before proceeding to the comparisons, the various 
methods and algorithms for each propagation model are discussed below. 

Table 2 gives a brief summary of the models and their capabilities. 
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13.1.1.2.1. TIREM 
The Terrain Integrated Rough Earth Model (TIREM) is a general purpose point to point 
model applicable from 2 MHz to 20 GHz developed by the Joint Spectrum Center (JSC). 
TIREM models the ground wave, terrain reflection and diffraction, and troposcatter in 
benign atmospheres. TIREM computes the paths between the terminal points of a radio 
link and applies the correct theoretical model depending on the situation. When 
computing rays, the effective earth's radius is required and thus TIREM uses the surface 
refractivity to compute the effective earth's radius. Knowing the ray paths TIREM 
computes, rain and foliage attenuation can be computed. TIREM is one of the most 
thoroughly validated models. The TIREM validation report is available from JSC, the 
TIREM sponsor, which outlines over 10,000 real world measurements used to validate 
TIREM. According to the report, the mean error in TIREM vs. measured data is less than 
1 dB with standard deviation around 10 dB. Further, the TIREM developers have built 
TIREM to run fast. 

TIREM employs a hybrid method: switching between various algorithms as the 
conditions merit. In regions where more than one propagation mode may be present, 
TIREM selects the mode with the least loss. 

TIREM's algorithms are very dependent on correct terrain sampling resolution. TIREM 
selects the radio horizon and the diffraction and reflection point by searching the terrain 
points. Thus, JSC recommends that TIREM is given terrain elevation points that are no 
more the 250 meters apart. Unless prominent terrain features have been identified and 
included in terrain profiles, JSC recommends 3 arc second DTED be used. However, 
terrain reflection is only considered if the Fresnel zone intersects the terrain. The Fresnel 
zone is the ellipse of points such that the path difference between the direct path and any 
reflection path with a reflection point within the ellipse is less than V2 a wavelength. For 
practical purposes, this is why TIREM results do not show the strong lobing stucture. The 
TIREM Fresnel zone approximation for reflection points means that only the structure 
present below the peak of the first lobe is modeled. 

For terrain diffraction, TIREM applies the Epstein-Peterson knife-edge diffraction 
method. Depending on the frequency and the knife-edge height and sharpness, knife- 
edge diffraction may underestimate the loss in the shadow region. TIREM compensates 
for this by using a hybrid algorithm that alleviates this problem in most cases. Thus, the 
error in TIREM has been reduced to only a few dB in areas in the shadow well above the 
terrain. 

Often in deep shadow regions the troposcatter path will have less loss. TIREM uses the 
CCIR/ITU method to predict troposcatter loss. This empirical method gives only mean 
results, and, thus, troposcatter results may vary significantly depending on the area of the 
world and time of year. In general, TIREM's method will produce reliable answers that 
communication planners can use to design troposcatter links. 

The most notable TIREM anomaly is found in the shadow region of a broad hill. When 
computing the losses for a broad hill, TIREM often identifies more than one knife-edge 
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on the hill. This causes odd shadowing behavior between the shadow cast by the first and 
second knife-edges. 

13.1.1.2.2. ITM 
The Institute of Telecommunication Sciences (ITS) Irregular Terrain Model (ITM) is 
maintained by George Hufford. ITM uses ray methods together with parametric 
formulations to compute the loss due to reflection, diffraction, and troposcatter. ITM is 
applicable between 20 MHz and 20 GHz. ITM has been widely accepted in the radio and 
television broadcast industry. This is due in large part to the numerous measurements 
taken by ITS and used to validate the model and develop broadcast statistical parameters 
such as reliability and confidence of a radio link. 

The reference attenuation is not a smooth function of distance, but is divided into three 
regions. The line-of-sight region extends to the smooth-earth horizon distance. Here, the 
bulge of the earth does not interrupt the direct radio waves and the predicted attenuation 
is based on two-ray reflection theory and extrapolated diffraction theory. In the next 
region, the predicted attenuation is a weighted average of knife-edge and smooth earth 
diffraction calculations. The weighting factor is a function of frequency, terrain 
irregularity, and antenna heights. Far outside the radio horizon, forward troposcatter 
effects dominate. An adjustment is made to the reference attenuation for climate to 
convert the reference attenuation to an all-year median attenuation. 

For the diffraction region only the transmitter and receiver's horizons are used. The loss 
is computed using a weighted average between no more than two knife edges and 
Vogler's smooth earth methods. The weighting factor is an empirically determined 
function of frequency, the antenna heights, and terrain parameters. 

Because the diffraction rays ignore the reflected component, the deep shadow shows 
significantly less loss than is actually present. Further, as only the endpoints' horizons are 
applied, diffraction effects from more than two terrain obstacles will not be evident in 
ITM predictions. 

13.1.1.2.3. APM 
The Advance Propagation Model (APM) was developed by Amalia Barrios from 
SPAWAR SSC-SD. APM uses a hybrid parabolic equation (PE) method to compute the 
attenuation from 100 MHz to 20 GHz. APM models terrain reflection and diffraction, 
atmospheric ducting, and troposcatter. APM uses a flat earth (FE) ray tracing algorithm 
near the transmitter. When the flat earth assumption is no longer valid, APM uses a ray 
optics (RO) method, i.e. ray tracing over a curved earth. When the transmitter is over 
rough terrain, neither the FE nor RO methods are applied. When the FE and RO methods 
are no longer valid, APM applies the parabolic equation (PE) near the ground and an 
extended optics (XO) method above the PE region. 

To understand the importance of APM's hybrid method, first consider how the parabolic 
equation method works. In PE models, the fransmitter antenna pattern is converted to a 
field distribution along a vertical line located at the calculation origin, i.e. the fransmitter 
or zero range. The initial field is then marched (stepped) in range using a Fourier method 
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and an atmospheric correction. Accordingly, APM and other PE models naturally fill a 
vertical plane with loss data as they compute. This means that PE models are not efficient 
when computing an isolated point-to-point calculation, but are excellent for computing 
losses for a large numbers of height points. Within each range step, the field is Fourier 
transformed forward, a refractivity correction applied, and transformed back to the 
original domain. For the Fourier method to be accurate, it must have a height grid 
resolution of around 0.1 X. Since the vertical extent of the field cannot go to infinity, a 
maximum height is determined in the algorithms, and methods are applied to eliminate 
effects of the upper boundary of the calculation region. The maximum calculation height 
is related to the vertical beamwidth that the algorithm can support; more correctly the 
minimum and maximum angles in which energy is allowed to propagate. Needless to say, 
full PE methods with wide-angle capability and small range steps are computationally 
expensive. Thus, APM's hybrid method allows it to reduce the run time penalties 
inherent to PE methods. To get fiirther run time improvements, APM also sacrifices a 
wide-angle capability and some accuracy resulting from using larger range steps. 

The APM propagation model's narrow angle assumption results in null data for elevation 
angles not within specified limits. For elevation angles larger than APM's maximum, 
fi-ee space loss can be substituted. However, because of possible errors caused by terrain 
reflection, it is difficult to compensate for null APM data for angles below the minimum 
elevation angle. This will be most noticeable when the transmitter is high and over rough 
terrain. 

Using APM, shadows behind obstacles often have losses similar to those observed with 
knife-edge diffi-action, possibly because of the angle limitation and step size selection. 
Thus, APM underestimates the loss in the deep shadow. APM uses a fixed step size, so, 
occasionally; the internal APM step will not coincide with the diffraction edge. Thus the 
shadow boundary in APM is different than that in models which ensure the diffraction 
point is identified and used. 

As with all PEs, the initial field in APM is found from the transmitter's antenna pattern. 
Thus, unlike TIREM, the transmitter's antenna pattern cannot be applied after the 
calculation. Also, because of the nature of the PE algorithm, APM does not provide data 
to an external interface in order to allow the elevation angle dependence of the receive 
antenna to be considered. Thus, it is difficult to receive antenna patterns when using 
APM. 

The APM API requires that the calling application provide the refi-active data. In order to 
interpolate the refractive data at the PE range steps, APM assumes that the refractive data 
can be interpolated using corresponding indices in the profile arrays. Therefore, when 
using APM, the calling program is responsible for arranging the refi-active profiles 
accordingly, so that the interpolation is physically correct. In addition to refractive profile 
data, APM uses the humidity and temperature to compute absorption. 

APM uses the wind speed to determine the surface roughness of waves over water. The 
wind speed is related to the wave height and spacing, and consequently, the surface 
roughness. The surface roughness is then mapped to an angle dependent reflection 
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coefficient. Thus, APM essentially accounts for surface roughness by changing the 
reflection coefficient. Thus, energy is not scattered, but the effects of scatter on the 
forward propagated energy is considered. APM allows the wind speed to be set as a 
function of range. Thus, the surface roughness can be varied along a path. As well as 
computing the surface roughness effects over water, APM is equipped to take advantage 
of range dependent dielectric constants. 

Lastly, one manifestation of APM's hybrid scheme is an occasional inconsistency in the 
results as the boundary changes from the PE to the XO regions. In unpredictable 
situations, a feature or structure will slightly and abruptly change direction when crossing 
the PE/XO boundary. 

13.1.1.2.4. VTRPE 
The Variable Terrain Radio Parabolic Equation (VTRPE) model is one of the most 
versatile and precise models available. VTRPE was developed by Frank Ryan from 
SPA WAR SSC-SD. VTRPE can model the ionospheric sky wave, terrain reflection and 
diffraction, ducting, and the ground wave. 

VTRPE is a full PE, i.e. no approximations are made to the PE method and no hybrid 
methods are used. VTRPE uses a wide-angle propagator, i.e. energy at very large 
elevation angles is propagated (as compared with APM which has an upper elevation 
angle limit). VTRPE examines the field at each range step to determine the Fourier 
transform size required to correctly accomplish the computations. Further, VTRPE 
evaluates the fields at each range step to determine the maximum acceptable step size. By 
allowing the Fourier transform size and the range step to be variable, VTRPE keeps the 
results accurate and optimizes the model execution time. Thus, if a transmitting antenna 
has high elevation angle contributions, e.g. an isotropic antenna, the Fourier transform 
size will be large and the range step size small causing longer than potentially required 
run times. 

As with APM, VTRPE can model the effects of range dependent atmospheres and 
dielectric constants. VTRPE can either call out to an external program for the refractive 
index data at each range step or have multiple profiles passed to it. In comparison to the 
atmosphere, VTRPE models the ionosphere internally. The model VTRPE uses is the 
FAIM-D ionosphere model for the E and F layers and the smoothly transitions to the IRI 
model to include the D Layer. 

Antenna patterns for VTRPE are treated similarly to APM, that is, the transmit antenna 
pattern is applied to compute the initial field. However, since VTRPE can model the 
ground wave, VTRPE models the complex antenna ground interaction required to 
properly excite the ground wave for arbitrary antennas. Thus VTRPE requires that for 
antennas model the ground plane is not included in the pattern. Additionally, for non HF 
receive antennas, since VTRPE only offers loss and no angular distribution of the energy 
at the receive point. 
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13.1.1.2.5. Comparisons 
To understand the differences between the models, some simple test cases using terrain 
that allows the differences to be isolated were used. The configurations for these tests are 
described below. In all cases the frequency chosen for the comparisons was 300 MHz 
with vertical polarization. APM, VTRPE, TIREM and ITM were compared. 

Two wedges were chosen to better quantify the effects of a second diffraction. The first 
double wedge case uses two wedges with difference maximum elevations. This allows 
the testers to see if the shadow boundary caused by diffraction from the second wedge is 
properly modeled. The transmitter height is 10 meters, the min range = 5 km, max range 
= 50 km, min height = 1 meter, max height = 1,001 meters MSL, number of ranges = 
181, number of heights =101, and the terrain profile in range in km and height in meters 
is (0, 0), (6.25, 200), (12.5,0), (25,0), (31.25, 150), (37.5, 0), and (50, 0). 

The test results for the two uneven wedges are show in Figure 25. First notice the VTRPE 
results. The interference pattern from the direct and reflected rays is clearly present in the 
illuminated region. Also, we see the diffracted and reflected ray interference in the 
shadow regions. Evidence of reflected energy off of the front face of the second wedge is 
also seen. APM does almost as nice a job as VTRPE. With APM the interference pattern 
in the shadow of the first wedge is noticeably bent in a non-physically justifiable way. 
Also, since APM uses a narrow band PE propagator, the strong lobing found before the 
first hill is not present. In short the parabolic equation models' results demonstrate why 
the PE method is widely accepted as the standard. Only high fidelity ray methods such as 
those used in GTD Estimation of Loss due to Terrain Interaction (GELTI) will give 
similar results as the PE methods. Thus we should not expect TIREM or ITM to show the 
same features as VTRPE and APM. First, neither TIREM nor ITM model the reflected 
ray (except very near the ground) and thus the lobing structure is not found in these 
results. The transition to the shadow boundary is significantly sharper in these models. In 
TIREM diffraction is applied just above the shadow boundary so the transition is more 
realistically gradual in its results. ITM, however, does not model this at all and the 
transition is very abrupt. Lastly, in the shadow of the first hill, TIREM underestimates 
the loss. 

The second double wedge case (Figure 26) uses two wedges with the same maximum 
elevations. Again, the transmitter is 10 meters above the ground and min range = 5 km, 
max range = 50 km, min height = 1 meter, max height = 1,001 meters MSL, number of 
ranges =181, number of heights =101, and the terrain profile in range in km and height 
in meters is (0, 0), (6.25, 0), (12.5,450), (18.75, 0), (31.25, 0), (37.5,450), (43.75,0), and 
(50, 0). 

For the two even wedges (now slightly higher and further fi-om the transmitter) we notice 
some interesting differences in the models' behavior. Again, VTRPE gives results that 
demonstrate the presence of all of the correct physics are found in the algorithm. 
Interestingly, in the VTRPE results we see the energy reflected fi-om the front of the first 
wedge and the diffraction pattern above the second wedge; features not seen in the other 
models. Unlike the first case, TIREM shows the deep shadow expected behind the first 
wedge. However, TIREM shows an anomaly emanating from the second wedge near the 
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shadow boundary. ITM also shows an unusual feature near the first shadow boundary. 
Further, the deep shadow behind the first wedge is not comparable with the PE results. 

Figiires 27 and 28 show the results of the two remaining test cases. The first shows the 
interaction with a rounded hill. As before, the transmitter is 10 meters above the groimd, 
the min range = 5 km, max range = 50 km, min height = 1 meter, max height = 1,001 
meters MSL, number of ranges = 181, number of heights = 101, and the terrain profile in 
range in km and height in meters is (0, 0), (18.75, 0), (20.312, 210), (21.875, 320), 
(23.4375, 375), (25, 390), (26.5625, 375), (28.125, 320), (31.25, 90), (32.8125, 0), and 
(50,0). 

This test case challenges the models to represent a large rounded hill. Often this test will 
cause a model's diffraction search algorithms to give erroneous results. In fact, this test 
case demonstrates that TIREM may be unable to properly select the diffraction edges. 
Also because of the rounded transition to the shadow beyond the wedge, models that treat 
diffraction as a pure knife edge fail to give dark enough shadows near the ground behind 
the hill. Thus this test case illuminates ITM's method for computing diffraction and the 
resulting 30-40 dB difference between ITM and the PE models in the deep shadow. As 
has been observed in the previous test results, the PE models give physically reasonable 
results for this test case. Further VTRPE again models all of the propagation features 
expected by the physics governing this situation. 

The final test case seeks to isolate diffraction from the other phenomena. In this case a 
transmitter at 1,278 meters MSL, vertical polarization, min range = 25 km, max range = 
50 km, min height = 1,248 meters, max height = 3,248 meters for AGL and MSL, 
number of ranges = 201, number of heights = 101, the terrain profile in range in km and 
height in meters to (0,0), (25,1, 748), and (50,0). 

After reviewing the resuUs from the previous test cases, the results for the final test are 
expected. Again the PE methods demonstrate the underlying physics very well. TIREM 
matches the PE methods quite well in the shadow region while ITM underestimates the 
loss in the deep shadow. 

These test results confirm that correct modeling of the shadow boundary, reflection lobes, 
and deep shadows is required for JCS scenarios. After reviewing these test results and 
considering them together with the platform speed and environmental parameter 
resolution, it is clear that modeling the following features is less important than modeling 
the aforementioned first order features: small scale lobing in the illuminated diffraction 
region, smooth accurate transition from the illuminated to the shadow region, reflection 
structure in the shadow region, and reflection from the front faces of hills. These minor 
features do not have large loss variations and largely occur over small areas. Thus the 
time resolution of the simulation and corresponding spatial resolution render the second 
order effects inconsequential to JCS simulations. 
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13.1.1.3. Run time comparisons 
Using terrain data from Edwards Air Force Base, the run times for 36000 TIREM and 
ITM computations were compared. All of the following tests were run on an Intel 
Pentium 4 (3.06 Ghz) with 512MB RAM and a 512 KB Cache using the Redhat Linux 
8.0 operating system. From the Sec® CPU 2000 benchmark data, chips found in the JCS 
have about 40% of the performance of the Pentium 4 used for this test. 

50 km 500 km 

ITM 0.677 seconds 0.832 seconds 

TIREM 3.14 

1.256 seconds 10.156 seconds 

TIREM 3.15 1.234 seconds 10.152 seconds 

Although these tests were not completely comprehensive and the results preliminary, 
clearly ITM is much faster than TIREM. So once the core methods of these algorithms 
can be extracted and the blatant intolerable errors corrected, they can be written in the C 
programming language. The methods currently under development addressing this are 
discussed below. 

13.1.2. Proposed methods and algorithm 

13.1.2.1. Derivation and Discussion 
This section will outline the theoretical motivation and practical justification for a 
number of features presently installed in the developing model. The first subsection will 
describe the method for enforcing continuity across the shadow boundaries associated 
with initial obstruction of inter-visibility and with higher order shadows involving 
multiple diffraction centers. Subsection [13.1.2.1.2] will present a qualitative description 
of a method employed to model specular reflections accompanying smooth earth 
attenuation of initially knife-edge diffracted fields. Subsection [13.1.2.1.3] will examine 
the multiplicity of theoretical and practical aspects of GTD and its accepted 
generalizations which contribute to its particular applicability to the present model. The 
final section will detail two representative auxiliary algorithmic constructs which have 
proven vital to the inevitable realization of the current objectives. 

13.1.2.1.1. Initial and Multiple Knife Edge Shadow Boundary Continuity 
A desirable feature of the proposed model is a continuous interfacing of fields initially 
propagated over a smooth earth which then encounter shadow boundaries introduced by 
irregular terrain features best modeled by GTD or single knife edge diffraction. 
Continuity across the shadow boundary of a smooth earth diffracted field attenuated by a 
knife edge can be enforced by a method similar to that found effective in enforcing 
continuity across the (second) shadow boundary of a double knife edge diffraction as 
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modeled by Epstein and Peterson [1]. Epstein and Peterson [1] model the double 
diffraction regions below the second shadow boundary as the product of two attenuations 
each calculated as an effective single knife edge attenuation in which the first knife edge 
serves as the source for the second. Thus in the Figure 29 curves /?,23and i?223are 
associated with the conventional attenuation factors in which the first knife edge 
contributes the constant values aoi2 along curve i?,23, below point C, and the second 

knife edge contributes the variable attenuation ^^(vj) along curve /Jjja^slow transition 

region D. 

Above the second shadow boundary the total attenuation may also be modeled as the 
product of two terms, the first of which, due to the first knife edge diffraction, Ai is taken 

as «o,(v,)along curve R^^2 above point C, with a lower limit set by its values at the 

second knife edge ^4, = a^i^. The second factor due to the diffraction by the second knife 
edge A^ may be defined as one for values of the clearance ratio exceeding transition 
argument v = 0.78, above transition region D, and as the conventional second knife edge 

attenuation A^ = a,2(v2)for arguments less than 0.78, below transition region D. The 

activation of the second attenuation at .78 is continuous because the analytic attenuation 

"12(^2 =-78) is identical to the defined value of unity for values of Vj exceeding .78. The 
loss increases continuously as a fiinction of V2 fi-om an initial loss of 0 at the transition 
argument of V2 = .78 to values of loss exceeding 0 for values of Vj less than .78. 

Proceeding similarly for the shadow boundary associated with a smooth earth diffracted 
field attenuated by a knife edge, the first attenuation factor is assigned its conventional 
value of a^ above point A along curve i?ooi and is assigned the limiting (constant) value 

of orJi below point A. The second attenuation factor, due to the first knife edge, is defined 
as 1 along curve /?,oifor arguments exceeding .78 (above ti-ansition region B) and is 
otherwise assigned its conventional single knife edge attenuation «(„along curve R^i2, 
below transition region B. The success of this mechanism of enforcement of continuity 
across the smooth earth-knife edge shadow boundaries is apparent in the loss contour 
plots presented in this report. 

13.1.2.1.2. Derivation of Terrestrial Specular Knife Edge Reflection 
This section will present a qualitative description of a method employed to model 
specular reflections accompanying smooth earth attenuation of initially knife-edge 
diffi-acted fields. The smooth earth field propagation formulation of Norton [10] involves 
the summation of a direct ray and a reflected ray which is corrected for finite ground 
constants by a surface wave 

_ (to-,        ^ _ ^i 

E, = ^+^[DR+{1- R)f{P,B)\ (1) 
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Factoring out the direct ray, this may be written explicitly as the product of the direct ray 
and a smooth earth interference attenuation factor: 

C- \    ^ I A      'I \^e''^DR^{\-R)f(P,B)]\ (2) 
4m•^  1 /2 

If the complex direct and reflected prefactors in Eq.(l) are replaced by smooth earth- 
knife edge attenuated field emanating from the first knife edge, one obtains 

£(-»(v)= £*''(v,) + £*'^(v,)[Z)7? + (l-/?)/(P,5)] (3) 

where quantities within the bracketed term are computed relative to the effective 
transmitter provided by the intervening knife edge, and where the Fresnel integral 
representation of knife edge attenuation assumes the form [8] 

E^'''\i) = 
e 

ATCTI 2      V(2)   ^ 
(4) 

The Fresnel integrals appearing in this more general problem are not related by a 
multiplicative phase factor, but are rather explicit functions of the coordinates associated 
with the real and virtual receivers introduced by image theory and must therefore be 
evaluated independently as in Eq.(3). The above approximation is implemented by 
evaluating the knife edge attenuation at both real and virtual receivers, evaluating the 
bracketed expression in Eq.(3) with arguments consistent with a transmitter located at the 
intervening knife edge, and then adding the resulting generalized direct and reflected 
components. The inclusion of the surface wave component, appearing as the second term 
in Eq. (3), is expected to eliminate the inordinately high losses that often accompany the 
mutual cancellation of direct and reflected fields as modeled by a simple two ray specular 
reflection construction. 

13.1.2.1.3. Justification for Selection of GTD and Extensions 
This section will examine the appealing features inherent in GTD, its extension to 
multiple diffraction and its reinterpretation as the first term of an exact expansion. 
Techniques of geometrical optics applicable to classical diffraction originated by Keller 
[5] and refined by Kouyoumjian and Pathak [6] and practically adapted by Luebbers [7] 
and Holm [3][4] are appealing to the present objective and foundational to the example 
calculations presented in this report. The especially appealing features of GTD/UTD 
include its reduction to established exact first order approximations for both single and 
double knife edge configurations and its provision of a multiple diffraction algorithm for 
both knife edges and wedges which are identical to established first order terms for the 
more general multiple diffraction configurations. 

Kouyoumjian and Pathak [6] show that their formulation of wedge diffraction, if applied 
to the special case of vanishing interior wedge angle, naturally reduces to Sommerfeld's 
solution for diffraction by a half plane. Also in the context of applications for single knife 
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edge diffraction and as applied to finite ground constants, Holm [4] has shown that a self- 
consistent modeling of the four UTD partial diffraction coefficients identifies a single 
term as being associated with a perfectly absorbing knife edge. This result is also 
consistent with the more general results of Sommerfeld for perfect conductivity of either 
polarization. 

Extending this comparative study to established analytic results for two knife edges, in 
examining Holm's novel expression for multiple wedge diffraction as a sum of products 
of one dimensional Fresnel integrals, it becomes apparent that for the special case of two 
diffraction centers with zero interior wedge angle. Holm's expression reduces to 
Millington's exact derivation [9] of the correction of the Epstein Peterson model [1] for 
attenuation by two knife edges. In particular Millington shows that the Epstein Peterson 

expression is exact to within a factor of sin {/) such that the magnitude of the doubly 

diffracted field is written 

E^'^ = «oi2«i2(v2)sin(r) (5) 

where aoi2 and «,2(v2) are attenuation factors associated with the first and second knife 

edges. Millington's essential correction of the Epstein Peterson formulation is the pre- 
factor multiplying the product of the single knife edge attenuations which in his notation 
is written 

sin {r)= 
b{a + b + c) 

{a + bXb + c) 

1/2 

(6) 

Converting to Holm's notation now by making the substitutions a= ri, b=r2 and c=r3, one 
obtains 

in(r) = smi 'zklAlZil 
nl/2 

.(^1 +'•2X^2 + '•3). 
(V) 

The analogous expression derived by Holm, in Eq.(9) of Reference [3], intended to also 
express double knife attenuation as a product of single knife edge attenuation factors, is 

E = 
fj- L[ L2 

'"l''2^3 

1/2 

Ao,2A^12 (8) 
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Introducing the transformation expression 

T — 

r,r^ 

^2 
^2 + ^3 

The Holm double knife attenuation prefactor becomes 

A2 = 
[(^. + '-2 + ^3)(''l^2)(^2^3) 

.   ^l''2''3('"l + ^2X^2 + ^3). 

which reduces to 

An = 

1/2 

1/2 

(9) 

(10) 

which is identical to Millington's expression , Eq. (6). 

In view of the multiplicity of algorithms [2] proposed for modeling multiple knife edge 
diffraction, it is appealing that the established extension of GTD to multiple diffraction 
has been identified as the leading term of Vogler's exact series solution. The mechanical 
generalization of GTD to multiple diffraction when reduced to wedges with zero interior 
wedge angle provides a multiple knife edge algorithm with all the inherent advantages of 
GTD. Holm [3] has shown that GTD may be interpreted as the first term resulting from a 
rearrangement of Vogler's exact multiple knife edge expression and that the exact result 
may be obtained by including sufficiently many terms. Holm has also shown that the 
second term of his summation corresponds to slope diffraction which has been 
established as the leading second order correction of first order GTD. The provision by 
GTD of a multiple knife edge algorithm recognizable as the leading term of established 
exact expressions for multiple diffractions and recognition that the higher order terms 
themselves consist of one-dimensional integrals reinforces the perception of its 
desirability for the present purposes. Similar remarks apply to finite wedge angles and 
therefore an appealing continuity of formalism is realized in the generalization of 
multiple knife edge to multiple wedge diffraction. Thus GTD serves as first term of exact 
solution expressed as a summation which is especially relevant to previously intractable 
problems associated with overlapping shadow boundaries in that they may be solved by 
the simple inclusion of more terms. 

13.1.2.1.4. Auxiliary Constructions Supportive of the Current Effort 
This subsection will describe examples of supporting algorithms developed during the 
time frame of the current review period. The first portion of this subsection describes the 
complexity of proper computation of height gain fiinctions inherent in smooth earth 
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propagation which has required numerical realization of the essential methods outline by 
Norton [10]. Finally, a method for eliminating troublesome interference variability is 
examined at the conclusion of this subsection. 

Smooth earth algorithm of Norton with complete treatment of surface wave, height gain 
functions, and derivative conserving intermediate regime interpolation algorithm. 

To assure proper treatment of those aspects of terrestrial propagation best modeled as 
diffraction over a smooth earth, the formulations of Norton [10] have been adapted in the 
time frame covered by this progress report to computational accessibility. Norton's form 
for the geometrical optics electric field propagated over a smooth planar earth is given by 

E'"^[^*e'-'^[R.{l-R)f{p.p)]\ (11) 

where A is the phase difference between direct and reflected ray paths A = 2n[r2 - r^)/ X 

For extended planar configurations with antennas close to the ground, the reflection 
coefficient approaches -1, and the above planar earth formulation as modeled by Norton 
approaches an intermediate asymptotic form associated with complete mutual 
interference of direct and reflected waves to define a surface wave which must be refined 
by height gain factors: 

E{r) = ^[2f(p,b)z(^,)] (12) 

where z[qi);i = 1,2 is the height gain factor associated with the transmitter/receiver and 
where ^, and ^j are scaled antenna heights normalized by ground constant parameters. 
For sufficiently elevated antennas, the argument dependence of the height gain factors 
must be generalized to include another argument, the ground constant and frequency 
dependent parameter K such that the above equation is written 

^^'^ = j;^WipM^^'M^2,K)] (13) 

For sufficiently elevated antenna, the two physical form of the diffracted field are unified 
in a single theoretical formulation 

E{r) = ^|l+ ^" y[R'D+{l- R')f(P,B)i (14) 
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where primes indicate dependence upon spherical earth geometry and where D is a 
divergence factor not explicitly present in the planar earth formulation. The height gain 
factors in the extended planar surface wave and in the more general spherical earth 
formulation may be identified as factors that appear in Bremmer's exact solution which 
admits to a Hankel approximation involving solution of the root generating equation 

Hl"(^)={3^Ye'^-"''''"'^Hf"(^) (15) 

where //,''(^)is the complex Hankel function of the first kind of real order  v and 

^= y(- 2^0) • The arguments q^ and K of the height gain factors z(^,.,A:)are functions 

of the complex quantity, TQ appearing in the above equation which must be solved to 
properly compute the vital height gain factors in Norton's formulation. The above 
formulations are valid within a restricted range of the horizon dictated by the limits of 
geometrical optics such that the proper form beyond these limits is computed as an 
interpolating fiinction between the geometrical optical limits and the final diffracted form 
approximated by the first terms of the Bremmer series. Within the time frame covered by 
this progress report, the graphical methods of Norton have been mathematically 
transformed for computational accessibility, the proper special functions for computing 
the surface wave have been collected and numerical iterative solutions to the complex 
Hankel root-generating equation have been developed to compute the complex quantities 
upon which the arguments of the height gain fiinctions depend. The success of the 
implementations is apparent fi-om the replication of Figures 13-15 in Norton's paper. 

Elimination of numerical precision variability associated with superposition of UTD 
direct and diffracted components with essential first order small argument phase 
difference expression at overlapping shadow boxmdaries. 

Above the shadow boundaries, the formalism of GTD requires that the direct ray serving 
as source to the diffraction center is added to the diffracted ray itself In the approach to 
shadow boundary fi-om the illuminated half-plane, the diffracted ray approaches a form 
which may be identified as -1/2 the direct ray and the superposition of the two leads to a 
total field which is(l/2) times the direct ray for the characteristic 6 dB loss. Below the 
shadow boundary, the direct ray no longer contributes and the diffraction formalism 
imposes a change in sign on the diffracted ray such that the total ray is purely diffracted 
and of exactly the same magnitude as the total field infinitesimally above the shadow 
boundary. Coexisting with the delicacies of field continuity across the shadow boundary 
is a possibility for an undesirable numerical variability resulting from the addition of the 
direct and diffracted rays which is attributable to small phase differences of the two wave 
forms. The interference factor of the direct and diffracted components can be represented 
by 

E^ = ~-[l+(r/p')DAe-"'^''''''-'^] (16) 
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The phase factor r"'*^''*'''"'^' essentially involves the subtraction of one quantity, r, the 

magnitude of the direct ray from the sum of two quantities {p+ p') to produce a phase 

difference factor which in fact vanishes at the shadow boundary. The numerical 
variability (noise) resulting from taking the difference of two relatively large quantities of 
vanishing difference was solved by examining the geometrical origins of the magnitude 
difference term suggested by the equation 

r=p-p' (17) 

Extracting square magnitudes, one obtains 

r' = pUp''-2pp'co{(^-^') (18) 

In the vicinity of the shadow boundary (^- (zJ' = ;r+ £• and the above equation may be 

rewritten as 

r^ = p^ + p'^ - 2pp' cos(;r+ e) (19) 

Expanding the cosine ftmction for small displacements s about TT, one obtains 
- 1 + f^ / 2 and the above equation becomes 

r' = p' + p''-2ppi-\+e'/2) (20) 

r^ = pUp'^-2pp'-pp'e^ 

r' = {p+p')-pp'£' 

r=^(p+p'Y -pp's^ 

Expanding the radical for [pp'e^] « {p+ p') , one obtains 

r=p,^--r^s' (21) 
2[p+ p'] 

and the quantity of interest becomes 

PP' 2 /0^^ p\p'-r=—. -xs (22) 
2/7+ p'] 

Ml 
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and Eq. [16] may be written 

^^ ^ Am 
—\l+ir/p')DAe-''"'] (23) 

where 

8r-p-\-p'- PP' 
2[p^p') 

(24) 

Eq. (23) is of course exact and the approximation in Eq. (24) is only required in the 
vicinity of the shadow boundary and was found to effectively eliminate numerical 
variability (noise) in plots of the interfering fields. 

Figure 36 

13.1.2.2. Comparison with other models 
A graphical comparison of path loss contour plots in the vertical propagation plane 
obtained from four established propagation models and of the proposed model in its 
current state of development appears in Figure 37 and Figure 38. The most striking 
difference among the coverage presentations in the lit region is the relative presence of 
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the fine interference structure as seen in APM and VTRPE. Though striking, such 
differences are usually merely indicative of whether the model in question suppresses 
superposition of direct and ground specular reflections. The profile essentially involves 
three perfectly absorbing knife edges in the first, third and fourth positions which create 
three successive shadows asymptotically and a fourth knife edge in the second position 
which is only a partial mask for the for the third knife edge and casts only a finite 
shadow. A vertical excursion at great distances for such a configuration should encounter 
three shadow boundaries and should exhibit a monotonic increase in loss upon traversing 
the first shadow boundary fi-om above. This behavior is indeed exhibited in APM, 
VTRPE, and our proposed model, whereas ITM exhibits precipitous discontinuities at the 
first and second shadow boundaries and fails to detect a third shadow boundary and the 
TIREM exhibits a misplaced region of excessive loss in the vicinity of the second shadow 
boundary. 

A horizontal excursion proceeding from the transmitter for such a terrain profile is 
expected to exhibit a monotonic increase in loss upon penetrating the first shadow 
boundary and to then experience two additional shadow boundaries if at an elevation 
greater than the third knife edge and one additional shadow if at a lesser elevation. These 
featiires are again exhibited in the APM, VTRPE, and the proposed model whereas 
TIREM again has difficulties in the second shadow for low and high elevation horizontal 
excursions and ITM model exhibits non-physically severe losses across both 
interpretations of its first shadow which curiously intersect at the third knife edge. 

Thus unlike TIREM and ITM, our model agrees well with the more rigorous resuhs 
found in APM and VTRPE with the advantage that it's run time are comparable with 
TIREM and ITM. 
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Fieure 38 
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